The Effects of Simulated Altitude Training on Aerobic Capacity and Function

International Journal of Applied Science and Technology Vol. 6, No. 2; June 2016

The Effects of Simulated Altitude Training on Aerobic Capacity and Function
Matthew T. Maher, MS, CEP
William Paterson University
Department of Kinesiology
300 Pompton Road, Wayne, NJ 07470
USA
Michael A. Figueroa, Ed.D., CSCS
William Paterson University
Department of Kinesiology
300 Pompton Road, Wayne, NJ 07470
USA


Abstract
This study investigated a 6-week intervention utilizing the Elevation Training Mask (ETM) in conjunction with an Intermittent Hypoxic Training (IHT) protocol to promote a hypoxic condition while still training at sea-level. Participants were randomly assigned into one of two groups; a Training Mask (TM) group and Non-Training Mask (NTM) group. Both groups trained at moderate to high intensity (65%-75% of their heart rate reserve) for 15 minutes, 2 times per week for 6 weeks. A one-way ANOVA was used in order to determine between group differences and a dependent t-test was then used to determine within group differences. The Results of this study showed a significant difference (p< 0.05) in Maximum Voluntary Ventilation (MVV) between the two groups and within the TM group after 6 weeks of training. The results also showed a slight, but not significant, increase in measured VO2 peak and % VO2 peak at anaerobic threshold.
Keywords: elevation training mask, intermittent hypoxic training, simulated altitude training, aerobic capacity, maximum voluntary ventilation
1. Introduction
Aerobic training is commonly measured by the rate at which oxygen can be used by an individual’s body during peak work. This is known as peak oxygen consumption or VO2 peak and is one of the best methods to predict cardio respiratory endurance and aerobic capacity. VO2 peak is related directly to the maximal capacity of the heart to deliver blood to the muscles (Howley & Franks, 2007). A certain type of training where the oxidative pathways are activated and become strengthened over time is required to improve and/or maintain VO2 peak. As demonstrated in a recent study by Fredowsi et. al. 2011, with an appropriate aerobic training program an improvement and increase in VO2 peak can be achieved. This study, along with several others, found that aerobic exercise had a significant effect on lung function with an enhancement of breathing efficiency, as well as, a decrease in pulmonary resistance (Ferdowsi, Saiiari, Valizadeh, & Gholamie, 2011)(Holm, Sattler, & Fregosi, 2004)(Illi, Held, Frank, & Spengler, 2012) (Morgan, Kohrt, Bates, & Skinner, 1987).
Hypoxia and aerobic exercise are two independent metabolic stressors that induce adaptations of the oxygen supply and utilization at the whole body tissues (Bailey, Davies, & Young, 2001). Due to these reasons, training under hypoxic conditions is widely used to improve athletic aerobic performance, which is linked to peripheral adaptations. During the last 20 years, a number of different methods and techniques have been created to simulate altitude hypoxia or altitude training. These include hypobaric chambers, hypoxic apartments, hypoxic tents, and hypoxic rooms. The premise of these modalities is to provide inspired hypoxia at rest and during exercise. One of the most common methods is intermittent hypoxic training (IHT). IHT refers to the discontinuous use of normobaric or hypobaric hypoxia, in an attempt to reproduce some of these key features of altitude acclimatization, with the ultimate goal to improve sea-level athletic performance (Levine, 2002). IHT is described